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ABSTRACT

Designing a Bayesian Network or a Decision net-
work (influence diagram) for a particular domain is
a difficult task. It involves many decisions about
how to represent the domain knowledge, including
which variables should be represented, what distri-
butions the variables should have, and the connec-
tions between the variables. When the domain in-
volves decisionmaking, there are modelling choices
to be made about how to represent the decisions and

the factors influencing those decisions.
In this paper we will consider a simple example that
involves these modelling considerations, that can be
either represented as a Bayesian network (with or
without explicit representation of decisions) or as a
Decision network (with explicit decision and utility
nodes). Through this example, we consider the ef-
fect of various modelling choices on belief updating
and the faithfulness of the resultant network to the
original problem.

1. INTRODUCTION

When modelling a domain that involves decision
making one should consider using a Decision Net-
work (influence diagram). However, before decid-
ing whether to use a Decision Network it is impor-
tant to understand the effect of various modelling
choices on belief updating.

In this paper we will present a simplified version
of an example presented by Crowley (2005). The
problem involves the allocation of lecturers to teach
a course with the constraint that at least one lecturer
has to teach it. As we describe in Section 2, Crowley
incorporated an explicit constraint node, which lead
to unwanted side-effects; while he proposed a novel
“shielding”method, this did not resolve the problem
satisfactorily.

We will look at how the problem can be either rep-
resented as a Bayesian network (with or without ex-
plicit representation of decisions) or as a Decision
network (with explicit decision and utility nodes).
Through this example, we consider the effect of var-
ious modelling choices on belief updating and the
faithfulness of the resultant network to the original
problem. The case study also highlights some more
general principles for Bayesian network modelling.

2. CROWLEY’S EXAMPLE

Crowley (2005) introduces an example problem that
involves instructors (lecturers) being assigned to

teach a course. We will consider a simplified ver-
sion of this problem involving only two lecturers.

Figure 1: Lecturer example with constraint
node not set.

In our version each lecturer is independently inter-
ested in teaching the course, which we represent by
the variables IA and IB respectively. Whether a lec-
turer wants to teach the course, represented by the
variablesWA andWB respectively, depends only
on their interest. Whether they teach the course,
represented by the variables TA and TB, only de-
pends on whether they want to give the course.



Figure 2: Lecturer example with constraint
node set.

Also, whether they reach their research goals, repre-
sented by the variables RA and RB, depends only
on whether they teach the course. Finally, we will
assume that at least one of the lectures must teach
the course.

Crowley modelled the constraint that at least one
lecturer must teach the course in a variety of ways.
One way (see Figure 1) involved introducing a so-
called binary valued constraint node (Jensen and
Nielsen, 2007, p.74), C, whose parents are TA and
TB, and the value of this node is true if and only if
one of the lectures does teach the course.

Table 1: Conditional Probability Table for C

TA TB C
true true true
true false true
false true true
false false false

To model the constraint the value of C is then set to
true (see Figure 2. Crowley noticed that this had the
’side-effect’ that the interest in the course by the lec-
turers changes. In Figure 1, p(IA = true) = 0.8
while in Figure 2, p(IA = true) = 0.809. Crow-
ley considered this effect inappropriate and so de-
veloped methods for modifying the network so that
this effect would not occur.

The simplest approach (see Figure 3) he consid-
ered involved adding another binary valued node,
A, called an anti-node to the network and setting its
value to true. The parents of A are WA andWB

Figure 3: Lecturer example with anti node

and conditional probability table (CPT) for A is de-
signed so that the joint probability ofWA andWB

is independent of the value of A and the value of C.

To obtain the values for of the CPT for A, we let

p(A|wA,wB) =
K

p(C|wA,wB)
,

for all values wA, wB of WA and WB, respec-
tively, and chooseK so that all values of the CPT of
A are between 0 and 1. It then follows thatA has the
desired properties and the resulting network, when
A is set to true, does not depend on what value you
have chosen for K.

However, introducing A changes the values of
p(TA) and p(TB). In Figure 3 (with Anti-node
representing A), p(TA = true) = 0.768 while in
Figure 2, p(TA = true) = 0.772. Moreover, it can
be shown, either by Bayes’ Theorem or constructing
a simplified version of the network Figure 2 with
only the nodes TA, TB and C, that the values for
p(TA) and p(TB) are correct in Figure 2. There-
fore by introducing a node A to solve one issue we
have created another issue.

Other approaches Crowley (2005) considered in-
volved combining new networks, which he called
Anti-networks. In all cases the idea was to shield
part of the network, in this case the nodesWA and
WB, together with their ancestors, from the the in-
fluence of the constraint node, C. However, in all
cases the introduction of these components causes
other side-effects.



Figure 4: Lecturer example with the possibili-
ties made explicit in a node

3. ALTERNATIVE BAYESIAN NETWORKS

We will now look at some alternative approaches to
modelling the problem of the two lecturers given in
the previous section.

Explicitly modelling all the alternatives

One approach involves introducing a node, Teach-
ing Allocation (D), which explicitly models the
teaching allocation decision being made (see Fig-
ure 4). This node has parents WA and WB,
has children TA and TB, and has the values “A
teaches”, “B Teaches”, “Both Teaches”, “Neither
Teaches”. To compute the CPT for D we use the
the fact that:

p(tA, tB|wA,wB) = p(tA|wA)p(tB|wB),

for values tA, tB, wA, wB of TA, TB,WA, and
WB, respectively. We remove the links between
WA and TA, and betweenWB and TB. Finally,
we add the negative evidence, that the value “Nei-
ther Teaches” is not possible.

This network is equivalent to the network with the
constraint node (Figure 2). In fact it doesn’t mat-
ter what way you model this constraint, if you do
it properly you obtain an equivalent network. This
can be seen by considering the joint probability of
all the variables. So we still have the problem that
the constraint alters the lecturers’ interest in teach-
ing the course.

More dependencies between variables

There are also other problems with the model. Con-
sider the relationship in Crowley’s original BN be-
tween the teaching of a course (Ti) and whether
they will achieve their research goals (RAi), rep-
resented by Ti → RAi. This structure implies
that a lecturer’s research output is the same whether
teaching the course alone or jointly, which seems
unlikely. It is straightforward to “fix” this prob-
lem by adding additional arcs from TA → RAB

and TB → RAA. However this does not resolve
the more fundamental modelling problem, which is
that there is a dependence between TA and TB

which is not being captured in the network. If the
variable of interest is not “Is lecture A/B teach-
ing the course” but instead “Who is teaching the
course”, then we see that there should be a single
variable T, with values “A teaches”, “B teaches”
and “Both A and B teach”.1 But if we collapse TA

and TB into such a 3-valued node T, with D →
T, then we still have the problem of specifying a
meaningless CPT row for the impossible situation
P(T|D = “Neither teaches”).

A simpler solution is to remove completely the T
nodes, and have Teaching Allocation (D) be the
single parent of both RAA and RAB, as shown
in Figure 5. Note that in this BN, we say that for
each lecturer, the probability they will achieve their
research goals given they are co-teaching the course
is 0.65, half-way between the probability if they are
teaching the course on their own (0.5) and not teach-
ing the course (0.8).

Figure 5: Lecturer example with the T nodes
removed

1This is an example of Korb and Nicholson’s (Korb and
Nicholson, 2010) “Common Modelling Mistake 5: Separate
nodes for different states of the same variable”.



Explicitly modelling all influences

There is a further problem with both our alternative
BNs containing theTeaching Allocation node: they
show only that the teaching allocation depends on
what the lecturers want, and do not capture explic-
itly the intuition that the decision will also take into
account the likely impact on the lecturers research
performance (an effect of that decision). Of course
theWi nodes, representing what the lecturers want,
may be implicitly incorporating that preference, but
that is captured only in the semantics of the node
name, not in the network structure at all.

To solve this problem, and to ensure that the con-
straint in how the teaching is allocated does not
change the lecturers’ interest in teaching the course,
you cannot model this with only a Bayesian Net-
work. You need to include something else in your
model.

4. MODELLING DECISION MAKING

Observations or interventions?

Crowley’s original BN, and our variations, all pro-
vide a probabilistic model of the teaching alloca-
tion decision. When evidence is entered for those
allocations, for example for D in our alternative
BN, this changes both the predictions about whether
the research s will be met (RA and RB), and also
change the beliefs in the lecturers interest (Fig-
ure 6). For the observation that someone has al-
located the person a course (an observation) tells us
that it is morely they wanted the course, which in
turn means they were more likely to be interested in
it. If the aim is to model decisions as causal inter-
ventions, then simply entering evidence into an or-
dinary BN is incorrect. This leads to the unwanted
“side-effects” in ancestor nodes (as we have seen
in Crowley’s teaching example), which in turn can
lead to incorrect predictions if there is an alternative
path from the ancestor nodes to descendant nodes.
See (Korb and Nicholson, 2010, Sec 3.8) for a more
detailed presentation of this issue.

Alternative ways of modeling causal interventions
in BNs have been proposed in the literature: Pearl’s
do-Calculus Pearl (2000) involves cutting the arcs
to parent nodes to prevent the propagation back up
the networks, while Korb et al. (2004) suggest an
additional intervention node that allows modelling
of probabilistic interventions and effectiveness (see
also Korb (2011) in these proceedings). More-
over, there is an extension to Bayesian networks, so-
called “decision networks” which not only model
the probabilities associated with interventions, but

Figure 6: BN from Fig. 4 with observation that
A has been allocated the course

support decision making by combining probabilities
with the cost and benefits that influence decisions.

Decision networks

Decision networks (also known as “Influence Di-
agrams” Howard and Matheson (1981)) consist of
3 kinds of nodes: chance nodes (oval), which are
the nodes in an ordinary BN, representing the do-
main variables; decision nodes (rectangular), repre-
senting the actions or decisions that may be taken;
and utility nodes (diamonds) whichmodel the utility
associated with their parents nodes (chances nodes
or decision nodes). The key point is that decision
nodes model interventions in the system, and do not
propagate changes in beliefs to their ancestors. De-
cision networks are used to compute the expected
utility (EU) of each decision, combining the prob-
ability of each outcome, x, with the utility of that
outcome and the decision:

EU(D = d) =
∑

x

P (x|D = d)U(x, d)

A decision network for teaching allocation

Let us now recast Crowley’s teaching allocation
BN into a decision network for teaching alloca-
tion. There are only three possible decisions: “A
teaches”, “B teaches” and “Both A and B teach”
the course. These become the possible values for the
decision node. This means there is no need to model
explicit the “constraint” of the earlier BN models,
that “Neither A nor B teach”, which is merely one
of the many (possibly infinite!) alternatives that are



not being considered.

The next step in the modelling process is to consider
what the utilities are for this problem. There are
clearly twomain aspects: (1) it is “good” if lecturers
are happy with their teaching allocation and (2) it is
“good” if lecturers can meet their research goals.

Figure 7: Decision network for the teaching
allocation example showing posterior proba-
bilities for the chance nodes, and the expected
utilities for each decision.

Figure 7 shows a decision network for the teaching
allocation example incorporating the decision Allo-
cation Decision and four utility nodes: the “happi-
ness” of the lecturers depending on whether they go
the allocation they wanted2 and the Research Prod
nodes. For illustration purposes, we have used the
totally arbitrary utility function shown in Table 2.

Table 2: Utility tables for the decision net-
work (the table for HappyB is symmetric to
HappyA)

WA Allocation Decision HappyA

true A Teaches 100
true A&B Teach 50
true B Teaches 0
false A Teaches -100
false A&B Teach -50
false B Teaches 100

RAi Research Prodi

true 100
false -50

Figure 7 also shows the posterior probabilities and
the expected utilities for the decision network with

2Note that Crowley did not really explain why there is a dis-
tinction between the interest in the course and whether they want
it; another alternative would be to simply drop theWA andWB

nodes and have each Ii being the parent ofHappyi utility node.

no evidence added. We can see that, given the pri-
ors only, the “best” decision (that is, the one that
maximises the expected utility) is to allocate both A
and B to this course. Figure 8 shows three different
scenarios for A and B’s interest in the course: (a)
both interested, (b) neither interested and (c) one in-
terested and one not interested. We can see that the
evidence effects the decision only through the im-
pact on the utility, as the probabilities for theT i and
RAi nodes are unchanged (as the decision hasn’t
been made yet). Conversely, Figure 9 shows what
happens when the decision is taken: the impact is
only on the Ti and RAi nodes, with the I and W
nodes unaffected.

(a)

(b)

(c)

Figure 8: Three scenarios of lecturer interest,
which impact on the expected utilities of the 3
alternative decisions.



(a)

(b)

Figure 9: Effect of decision being made (a)
A teaches (b) Both teach, neither of which im-
pacts on the I andW nodes.

5. CONCLUSIONS AND RECOMMENDA-
TIONS

We were looking into the general problem of mod-
elling constraints in BNs (Albrecht and Bud (2009))
when we came across Crowley’s teaching BN, and
his proposed shielding approach for dealing with
unwanted side effects, as described in Section 2.
Unsatisfied with the problems still remaining with
the BN model for such a seemingly simple prob-
lem, we developed a number of alternative models.
In this paper we have presented these as a case study
in modelling choices, particularly around modelling
decisions, which we feel may be of some interest to
the BNmodelling community. These lead to the fol-
lowing more general recommendations to BN mod-
ellers.

First, when problems are identified with a model,
for example when belief updating results in unex-
pected or unwanted changes in the distributions for
some variables, rather than introducing new nodes
or arcs to “fix” the problem, the modeller should
carefully examine the modelling choices embedded

in the existing model. Second, it is also important
to consider whether the aim is to produce (1) a BN
that is a probabilistic model of someone’s decision
making process, or (2) a decision network model to
support decision making of the general modelling
choices involved.

We note that there are other approaches to mod-
elling the teaching example that we have not con-
sider here, including the use of object-oriented BNs
to scale up across larger number of lecturers and
courses, and dynamic Bayesian networks to model
explicitly the impact over time of teaching alloca-
tions to research output. Also, the impact on com-
plexity on some of the modelling alternatives, only
need to be taken into consideration for larger deci-
sion problems, e.g., when allocating many lecturers
across many units. It may be that at larger scales, the
problem is better modelled as a non-probabilistic
constraint satisfaction problem, rather than as a BN.
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